Integral Points on Symmetric Varieties and Satake Compatifications

نویسندگان

  • ALEXANDER GORODNIK
  • NIMISH SHAH
چکیده

Let V be an affine symmetric variety defined over Q. We compute the asymptotic distribution of the angular components of the integral points in V . This distribution is described by a family of invariant measures concentrated on the Satake boundary of V . In the course of the proof, we describe the structure of the Satake compactifications for general affine symmetic varieties and compute the asymptotic of the volumes of norm balls.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric powers and the Satake transform

‎This paper gives several examples of the basic functions‎ ‎introduced in recent years by Ng^o‎. ‎These are mainly‎ ‎conjectures based on computer experiment‎.  

متن کامل

Effective Equidistribution of S-integral Points on Symmetric Varieties

Let K be a global field of characteristic not 2. Let Z = H\G be a symmetric variety defined over K and S a finite set of places of K. We obtain counting and equidistribution results for the S-integral points of Z. Our results are effective when K is a number field.

متن کامل

Compactifications of Moduli Spaces Inspired by Mirror Symmetry

The study of moduli spaces by means of the period mapping has found its greatest success for moduli spaces of varieties with trivial canonical bundle, or more generally, varieties with Kodaira dimension zero. Now these moduli spaces play a pivotal rôle in the classification theory of algebraic varieties, since varieties with nonnegative Kodaira dimension which are not of general type admit bira...

متن کامل

Kuga-satake Varieties and the Hodge Conjecture

Kuga-Satake varieties are abelian varieties associated to certain weight two Hodge structures, for example the second cohomology group of a K3 surface. We start with an introduction to Hodge structures and we give a detailed account of the construction of Kuga-Satake varieties. The Hodge conjecture is discussed in section 2. An excellent survey of the Hodge conjecture for abelian varieties is [...

متن کامل

Power-free Values of Polynomials on Symmetric Varieties

Given a symmetric variety Y defined over Q and a non-zero polynomial with integer coefficients, we use techniques from homogeneous dynamics to establish conditions under which the polynomial can be made r-free for a Zariski dense set of integral points on Y . We also establish an asymptotic counting formula for this set. In the special case that Y is a quadric hypersurface, we give explicit bou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006